Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
Nat Commun ; 15(1): 3477, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658529

RESUMO

Streptococcus dysgalactiae subspecies equisimilis (SDSE) and Streptococcus pyogenes share skin and throat niches with extensive genomic homology and horizontal gene transfer (HGT) possibly underlying shared disease phenotypes. It is unknown if cross-species transmission interaction occurs. Here, we conduct a genomic analysis of a longitudinal household survey in remote Australian First Nations communities for patterns of cross-species transmission interaction and HGT. Collected from 4547 person-consultations, we analyse 294 SDSE and 315 S. pyogenes genomes. We find SDSE and S. pyogenes transmission intersects extensively among households and show that patterns of co-occurrence and transmission links are consistent with independent transmission without inter-species interference. We identify at least one of three near-identical cross-species mobile genetic elements (MGEs) carrying antimicrobial resistance or streptodornase virulence genes in 55 (19%) SDSE and 23 (7%) S. pyogenes isolates. These findings demonstrate co-circulation of both pathogens and HGT in communities with a high burden of streptococcal disease, supporting a need to integrate SDSE and S. pyogenes surveillance and control efforts.


Assuntos
Transferência Genética Horizontal , Sequências Repetitivas Dispersas , Infecções Estreptocócicas , Streptococcus pyogenes , Streptococcus , Streptococcus pyogenes/genética , Streptococcus pyogenes/isolamento & purificação , Streptococcus pyogenes/classificação , Infecções Estreptocócicas/transmissão , Infecções Estreptocócicas/microbiologia , Humanos , Streptococcus/genética , Streptococcus/isolamento & purificação , Sequências Repetitivas Dispersas/genética , Austrália , Genoma Bacteriano/genética , Feminino , Masculino , Criança , Características da Família , Adulto , Pré-Escolar , Adolescente , Estudos Longitudinais , Farmacorresistência Bacteriana/genética , Adulto Jovem
2.
G3 (Bethesda) ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507601

RESUMO

Streptococcus pneumoniae (the pneumococcus) is a globally distributed, human obligate opportunistic bacterial pathogen which, although often carried commensally, is also a significant cause of invasive disease. Apart from multi-drug resistant and virulent clones, the rate and direction of pneumococcal dissemination between different countries remains largely unknown. The ability for the pneumococcus to take a foothold in a country depends on existing population configuration, the extent of vaccine implementation, as well as human mobility since it is a human obligate bacterium. To shed light on its international movement, we used extensive genome data from the Global Pneumococcal Sequencing (GPS) project and estimated migration parameters between multiple countries in Africa. Data on allele frequencies of polymorphisms at housekeeping-like loci for multiple different lineages circulating in the populations of South Africa, Malawi, Kenya, and The Gambia were used to calculate the fixation index (Fst) between countries. We then further used these summaries to fit migration coalescent models with the likelihood-free inference algorithms available in the ELFI software package. Synthetic data were additionally used to validate the inference approach. Our results demonstrate country-pair specific migration patterns and heterogeneity in the extent of migration between different lineages. Our approach demonstrates that coalescent models can be effectively used for inferring migration rates for bacterial species and lineages provided sufficiently granular population genomics surveillance data. Further it can demonstrate the connectivity of respiratory disease agents between countries to inform intervention policy in the longer term.

3.
Nat Commun ; 15(1): 2286, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480728

RESUMO

Streptococcus dysgalactiae subsp. equisimilis (SDSE) is an emerging cause of human infection with invasive disease incidence and clinical manifestations comparable to the closely related species, Streptococcus pyogenes. Through systematic genomic analyses of 501 disseminated SDSE strains, we demonstrate extensive overlap between the genomes of SDSE and S. pyogenes. More than 75% of core genes are shared between the two species with one third demonstrating evidence of cross-species recombination. Twenty-five percent of mobile genetic element (MGE) clusters and 16 of 55 SDSE MGE insertion regions were shared across species. Assessing potential cross-protection from leading S. pyogenes vaccine candidates on SDSE, 12/34 preclinical vaccine antigen genes were shown to be present in >99% of isolates of both species. Relevant to possible vaccine evasion, six vaccine candidate genes demonstrated evidence of inter-species recombination. These findings demonstrate previously unappreciated levels of genomic overlap between these closely related pathogens with implications for streptococcal pathobiology, disease surveillance and prevention.


Assuntos
Infecções Estreptocócicas , Streptococcus , Vacinas , Humanos , Streptococcus pyogenes/genética , Fluxo Gênico
4.
Comput Biol Med ; 171: 108185, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401454

RESUMO

BACKGROUND: Streptococcus agalactiae, commonly known as Group B Streptococcus (GBS), exhibits a broad host range, manifesting as both a beneficial commensal and an opportunistic pathogen across various species. In humans, it poses significant risks, causing neonatal sepsis and meningitis, along with severe infections in adults. Additionally, it impacts livestock by inducing mastitis in bovines and contributing to epidemic mortality in fish populations. Despite its wide host spectrum, the mechanisms enabling GBS to adapt to specific hosts remain inadequately elucidated. Therefore, the development of a rapid and accurate method differentiates GBS strains associated with particular animal hosts based on genome-wide information holds immense potential. Such a tool would not only bolster the identification and containment efforts during GBS outbreaks but also deepen our comprehension of the bacteria's host adaptations spanning humans, livestock, and other natural animal reservoirs. METHODS AND RESULTS: Here, we developed three machine learning models-random forest (RF), logistic regression (LR), and support vector machine (SVM) based on genome-wide mutation data. These models enabled precise prediction of the host origin of GBS, accurately distinguishing between human, bovine, fish, and pig hosts. Moreover, we conducted an interpretable machine learning using SHapley Additive exPlanations (SHAP) and variant annotation to uncover the most influential genomic features and associated genes for each host. Additionally, by meticulously examining misclassified samples, we gained valuable insights into the dynamics of host transmission and the potential for zoonotic infections. CONCLUSIONS: Our study underscores the effectiveness of random forest (RF) and logistic regression (LR) models based on mutation data for accurately predicting GBS host origins. Additionally, we identify the key features associated with each GBS host, thereby enhancing our understanding of the bacteria's host-specific adaptations.


Assuntos
Infecções Estreptocócicas , Streptococcus agalactiae , Feminino , Adulto , Animais , Humanos , Bovinos , Suínos , Streptococcus agalactiae/genética , Infecções Estreptocócicas/veterinária , Genômica , Peixes , Aprendizado de Máquina
5.
Nat Commun ; 15(1): 355, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191887

RESUMO

Streptococcus pneumoniae (pneumococcus) is a nasopharyngeal commensal and respiratory pathogen. This study characterises the immunoglobulin G (IgG) repertoire recognising pneumococci from birth to 24 months old (mo) in a prospectively-sampled cohort of 63 children using a panproteome array. IgG levels are highest at birth, due to transplacental transmission of maternal antibodies. The subsequent emergence of responses to individual antigens exhibit distinct kinetics across the cohort. Stable differences in the strength of individuals' responses, correlating with maternal IgG concentrations, are established by 6 mo. By 12 mo, children develop unique antibody profiles that are boosted by re-exposure. However, some proteins only stimulate substantial responses in adults. Integrating genomic data on nasopharyngeal colonisation demonstrates rare pneumococcal antigens can elicit strong IgG levels post-exposure. Quantifying such responses to the diverse core loci (DCL) proteins is complicated by cross-immunity between variants. In particular, the conserved N terminus of DCL protein zinc metalloprotease B provokes the strongest early IgG responses. DCL proteins' ability to inhibit mucosal immunity likely explains continued pneumococcal carriage despite hosts' polyvalent antibody repertoire. Yet higher IgG levels are associated with reduced incidence, and severity, of pneumonia, demonstrating the importance of the heterogeneity in response strength and kinetics across antigens and individuals.


Assuntos
Genômica , Streptococcus pneumoniae , Adulto , Recém-Nascido , Criança , Lactente , Humanos , Pré-Escolar , Streptococcus pneumoniae/genética , Imunoglobulina G , Imunidade nas Mucosas , Antígenos de Bactérias
6.
Microb Genom ; 10(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38270581

RESUMO

Pakistan is amongst the four countries with the highest number of pneumococcal deaths. While the PCV10 vaccine was introduced in Pakistan in October 2012, data regarding the impact of the vaccine on the population dynamics of Streptococcus pneumoniae in Pakistan remain obscure. Using whole genome sequencing of 190 isolates (nasopharyngeal carriage=75, disease=113, unknown sites=2) collected between 2002 and 2020, this study presents characteristics of pneumococcal strains in Pakistan in the pre- and post-vaccine era. The isolates were characterized on the basis of serotype distribution, genetic lineages (or Global Pneumococcal Sequence Cluster, GPSC) and antibiotic resistance. A high level of diversity in serotype and genetic lineages of pneumococci was observed in Pakistan. Among 190 isolates, we identified 54 serotypes, 67 GPSCs and 116 sequence types (STs) including 23 new STs. The most prevalent GPSCs and their associated serotypes in nasopharyngeal carriage were GPSC54 (expressing serotype 9V), GPSC5 (15A and 7B, and serogroup 24), GPSC25 (15B/15C), GPSC67 (18C) and GPSC376 (6A and 6D). Similarly, among 113 disease-causing isolates, the most prevalent GPSC/serotype combinations were GPSC2 (serotype 1), GPSC10 (serotypes 14, 10A, 19A and 19F), GPSC43 (serotypes 13, 11A, 23B, 35A and 9V), GPSC67 (serotypes 18A and 18C) and GPSC642 (serotype 11A). Of the 190 isolates, the highest levels of resistance were observed against penicillin (58.9 %, n=122), erythromycin (29.5 %, n=56), clindamycin (13.2 %, n=25), co-trimoxazole (94.2 %, n=179) and tetracycline/doxycycline (53.2 %, n=101). A higher proportion of disease-causing isolates were multidrug resistant as compared to carriage isolates (54 % vs 25 %). Our data suggest limited coverage of PCV10 in nasopharyngeal (21.6 %, 16/74) as well as disease-causing (38.1 %, 16/42) isolates among children ≤5 years old; however, higher valent vaccine PCV13 would increase the coverage rates to 33.8 % in nasopharyngeal and 54.8 % in disease-causing isolates, whereas PCV24/25 would offer the highest coverage rates. Owing to the diversity of serotypes observed during the post-vaccine period, the suggested inclusion of serotype in future vaccine formulations will require investigations with larger data sets with an extended temporal window. This article contains data hosted by Microreact.


Assuntos
Vacinas Pneumocócicas , Streptococcus pneumoniae , Criança , Humanos , Pré-Escolar , Paquistão/epidemiologia , Streptococcus pneumoniae/genética , Antibacterianos/farmacologia
7.
Microbiol Spectr ; 12(1): e0357923, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38059623

RESUMO

IMPORTANCE: Streptococcus pneumoniae (the pneumococcus) is a bacterial pathogen with the greatest burden of disease in Asia and Africa. The pneumococcal capsular polysaccharide has biological relevance as a major virulence factor as well as public health importance as it is the target for currently licensed vaccines. These vaccines have limited valency, covering up to 23 of the >100 known capsular types (serotypes) with higher valency vaccines in development. Here, we have characterized a new pneumococcal serotype, which we have named 33G. We detected serotype 33G in nasopharyngeal swabs (n = 20) from children and adults hospitalized with pneumonia, as well as healthy children in Mongolia. We show that the genetic, serological, and biochemical properties of 33G differ from existing serotypes, satisfying the criteria to be designated as a new serotype. Future studies should focus on the geographical distribution of 33G and any changes in prevalence following vaccine introduction.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Criança , Humanos , Streptococcus pneumoniae/genética , Infecções Pneumocócicas/microbiologia , Sorogrupo , Vacinas Pneumocócicas , Ásia
8.
Proc Natl Acad Sci U S A ; 120(47): e2307773120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37963246

RESUMO

The expansion and intensification of livestock production is predicted to promote the emergence of pathogens. As pathogens sometimes jump between species, this can affect the health of humans as well as livestock. Here, we investigate how livestock microbiota can act as a source of these emerging pathogens through analysis of Streptococcus suis, a ubiquitous component of the respiratory microbiota of pigs that is also a major cause of disease on pig farms and an important zoonotic pathogen. Combining molecular dating, phylogeography, and comparative genomic analyses of a large collection of isolates, we find that several pathogenic lineages of S. suis emerged in the 19th and 20th centuries, during an early period of growth in pig farming. These lineages have since spread between countries and continents, mirroring trade in live pigs. They are distinguished by the presence of three genomic islands with putative roles in metabolism and cell adhesion, and an ongoing reduction in genome size, which may reflect their recent shift to a more pathogenic ecology. Reconstructions of the evolutionary histories of these islands reveal constraints on pathogen emergence that could inform control strategies, with pathogenic lineages consistently emerging from one subpopulation of S. suis and acquiring genes through horizontal transfer from other pathogenic lineages. These results shed light on the capacity of the microbiota to rapidly evolve to exploit changes in their host population and suggest that the impact of changes in farming on the pathogenicity and zoonotic potential of S. suis is yet to be fully realized.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Animais , Humanos , Suínos , Infecções Estreptocócicas/veterinária , Fazendas , Doenças dos Suínos/epidemiologia , Virulência/genética , Streptococcus suis/genética , Gado
9.
Microb Genom ; 9(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38019122

RESUMO

Streptococcus agalactiae (group B Streptococcus, GBS) has recently emerged as an important pathogen among adults. However, it is overlooked in this population, with all global efforts being directed towards its containment among pregnant women and neonates. This systematic review assessed the molecular epidemiology and compared how the lineages circulating among non-pregnant populations relate to those of pregnant and neonatal populations worldwide. A systematic search was performed across nine databases from 1 January 2000 up to and including 20 September 2021, with no language restrictions. The Joanna Briggs Institute (JBI) Prevalence Critical Appraisal Tool (PCAT) was used to assess the quality of included studies. The global population structure of GBS from the non-pregnant population was analysed using in silico typing and phylogenetic reconstruction tools. Twenty-four articles out of 13 509 retrieved across 9 databases were eligible. Most studies were conducted in the World Health Organization European region (12/24, 50 %), followed by the Western Pacific region (6/24, 25 %) and the Americas region (6/24, 25 %). Serotype V (23%, 2310/10240) and clonal complex (CC) 1 (29 %, 2157/7470) were the most frequent serotype and CC, respectively. The pilus island PI1 : PI2A combination (29 %, 3931/13751) was the most prevalent surface protein gene, while the tetracycline resistance tetM (55 %, 5892/10624) was the leading antibiotic resistance gene. This study highlights that, given the common serotype distribution identified among non-pregnant populations (V, III, Ia, Ib, II and IV), vaccines including these six serotypes will provide broad coverage. The study indicates advanced molecular epidemiology studies, especially in resource-constrained settings for evidence-based decisions. Finally, the study shows that considering all at-risk populations in an inclusive approach is essential to ensure the sustainable containment of GBS.


Assuntos
Antibacterianos , Streptococcus agalactiae , Gravidez , Adulto , Recém-Nascido , Humanos , Feminino , Streptococcus agalactiae/genética , Epidemiologia Molecular , Filogenia , Bases de Dados Factuais
11.
Microb Genom ; 9(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37917136

RESUMO

Due to the emergence of non-vaccine serotypes in vaccinated populations, Streptococcus pneumoniae remains a major global health challenge despite advances in vaccine development. Serotype 16F is among the predominant non-vaccine serotypes identified among vaccinated infants in South Africa (SA). To characterize lineages and antimicrobial resistance in 16F isolates obtained from South Africa and place the local findings in a global context, we analysed 10 923 S. pneumoniae carriage isolates obtained from infants recruited as part of a broader SA birth cohort. We inferred serotype, resistance profile for penicillin, chloramphenicol, cotrimoxazole, erythromycin and tetracycline, and global pneumococcal sequence clusters (GPSCs) from genomic data. To ensure global representation, we also included S. pneumoniae carriage and disease isolates from the Global Pneumococcal Sequencing (GPS) project database (n=19 607, collected from 49 countries across 5 continents, 1995-2018, accessed 17 March 2022). Nine per cent (934/10923) of isolates obtained from infants in the Drakenstein community in SA and 2 %(419/19607) of genomes in the GPS dataset were serotype 16F. Serotype 16F isolates were from 28 different lineages of S. pneumoniae, with GPSC33 and GPSC46 having the highest proportion of serotype 16F isolates at 26 % (346/1353) and 53 % (716/1353), respectively. Serotype 16F isolates were identified globally, but most isolates were collected from Africa. GPSC33 was associated with carriage [OR (95 % CI) 0.24 (0.09-0.66); P=0.003], while GPSC46 was associated with disease [OR (95 % CI) 19.9 (2.56-906.50); P=0.0004]. Ten per cent (37/346) and 15 % (53/346) of isolates within GPSC33 had genes associated with resistance to penicillin and co-trimoxazole, respectively, and 18 % (128/716) of isolates within GPSC46 had genes associated with resistance to co-trimoxazole. Resistant isolates formed genetic clusters, which may suggest emerging resistant lineages. Serotype 16F lineages were common in southern Africa. Some of these lineages were associated with disease and resistance to penicillin and cotrimoxazole. We recommend continuous genomic surveillance to determine the long-term impact of serotype 16F lineages on vaccine efficacy and antimicrobial therapy globally. Investing in vaccine strategies that offer protection over a wide range of serotypes/lineages remains essential. This paper contains data hosted by Microreact.


Assuntos
Streptococcus pneumoniae , Combinação Trimetoprima e Sulfametoxazol , Lactente , Humanos , Streptococcus pneumoniae/genética , Sorogrupo , Genômica , Antibacterianos/farmacologia , África do Sul/epidemiologia , Penicilinas , Vacinas Pneumocócicas
12.
Microbiol Spectr ; 11(6): e0020123, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37811975

RESUMO

IMPORTANCE: Enterococcus faecalis causes life-threatening invasive hospital- and community-associated infections that are usually associated with multidrug resistance globally. Although E. faecalis infections cause opportunistic infections typically associated with antibiotic use, immunocompromised immune status, and other factors, they also possess an arsenal of virulence factors crucial for their pathogenicity. Despite this, the relative contribution of these virulence factors and other genetic changes to the pathogenicity of E. faecalis strains remain poorly understood. Here, we investigated whether specific genomic changes in the genome of E. faecalis isolates influence its pathogenicity-infection of hospitalized and nonhospitalized individuals and the propensity to cause extraintestinal infection and intestinal colonization. Our findings indicate that E. faecalis genetics partially influence the infection of hospitalized and nonhospitalized individuals and the propensity to cause extraintestinal infection, possibly due to gut-to-bloodstream translocation, highlighting the potential substantial role of host and environmental factors, including gut microbiota, on the opportunistic pathogenic lifestyle of this bacterium.


Assuntos
Enterococcus faecalis , Infecções por Bactérias Gram-Positivas , Humanos , Fatores de Virulência/genética , Virulência/genética , Antibacterianos , Infecções por Bactérias Gram-Positivas/microbiologia
13.
Microb Genom ; 9(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37712828

RESUMO

Streptococcus pneumoniae (pneumococcus) is a leading vaccine-preventable cause of childhood invasive disease. Nigeria has the second highest pneumococcal disease burden globally, with an estimated ~49 000 child deaths caused by pneumococcal infections each year. Ten-valent pneumococcal conjugate vaccine (GSK; PCV10) was introduced in December 2014 in a phased approach. However, few studies have characterized the disease-causing pneumococci from Nigeria. This study assessed the prevalence of serotypes, antibiotic susceptibility and genomic lineages using whole genome sequencing and identified lineages that could potentially escape PCV10 (GSK). We also investigated the potential differences in pneumococcal lineage features between children with and without sickle cell disease. A collection of 192 disease-causing pneumococcal isolates was obtained from Kano (n=189) and Abuja (n=3) states, Nigeria, between 1 January 2014 and 31 May 2018. The majority (99 %, 190/192) of specimens were recovered from children aged 5 years or under. Among them, 37 children had confirmed or traits of sickle cell disease. Our findings identified 25 serotypes expressed by 43 Global Pneumococcal Sequence Clusters (GPSCs) and 85 sequence types (STs). The most common serotypes were 14 (18 %, n=35), 6B (16 %, n=31), 1 (9 %, n=17), 5 (9 %, n=17) and 6A (9 %, n=17); all except serotype 6A are included in PCV10 (GSK). PCV10 (SII; PNEUMOSIL) and PCV13 formulations include serotypes 6A and 19A which would increase the overall coverage from 67 % by PCV10 (GSK) to 78 and 82 %, respectively. The pneumococcal lineages were a mix of globally spreading and unique local lineages. Following the use of PCV10 (GSK), GPSC5 expressing serotype 6A, GPSC10 (19A), GPSC26 (12F and 46) and GPSC627 (9L) are non-vaccine type lineages that could persist and potentially expand under vaccine-selective pressure. Approximately half (52 %, 99/192) of the pneumococcal isolates were resistant to the first-line antibiotic penicillin and 44 % (85/192) were multidrug-resistant. Erythromycin resistance was very low (2 %, 3/192). There was no significant difference in clinical manifestation, serotype prevalence or antibiotic resistance between children with and without traits of or confirmed sickle cell disease. In summary, our findings show that a high percentage of the pneumococcal disease were caused by the serotypes that are covered by currently available vaccines. Given the low prevalence of resistance, macrolide antibiotics, such as erythromycin, should be considered as an option to treat pneumococcal disease in Nigeria. However, appropriate use of macrolide antibiotics should be vigilantly monitored to prevent the potential increase in macrolide resistance.


Assuntos
Anemia Falciforme , Infecções Pneumocócicas , Humanos , Criança , Streptococcus pneumoniae/genética , Nigéria/epidemiologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Macrolídeos , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/prevenção & controle , Eritromicina , Inibidores da Síntese de Proteínas
14.
bioRxiv ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37693504

RESUMO

Introduction: Due to the emergence of non-vaccine serotypes in vaccinated populations, Streptococcus pneumoniae remains a major global health challenge despite advances in vaccine development. Serotype 16F is among the predominant non-vaccine serotypes identified among vaccinated infants in South Africa (SA). Aim: To characterise lineages and antimicrobial resistance in 16F isolates obtained from South Africa and placed the local findings in a global context. Methodology: We analysed 10923 S. pneumoniae carriage isolates obtained from infants recruited as part of a broader SA birth cohort. We inferred serotype, resistance profile for penicillin, chloramphenicol, cotrimoxazole, erythromycin and tetracycline, and Global Pneumococcal Sequence Clusters (GPSCs) from genomic data. To ensure global representation, we also included S. pneumoniae carriage and disease isolates from the Global Pneumococcal Sequencing (GPS) project database (n=19,607, collected from 49 countries across five continents, years covered (1995 - 2018), accessed on 17 th March 2022). Results: Nine percent (934/10923) of isolates obtained from infants in the Drakenstein community in SA and 2% (419/19607) of genomes in the GPS dataset were serotype 16F. Serotype 16F isolates were from 28 different lineages of S. pneumoniae, with GPSC33 and GPSC46 having the highest proportion of serotype 16F isolates at 26% (346/1353) and 53% (716/1353), respectively. Serotype 16F isolates were identified globally, however, most isolates were collected from Africa. GPSC33 was associated with carriage [OR (95% CI) 0.24 (0.09 - 0.66); p=0.003], while GPSC46 was associated with disease [OR (95% CI) 19.9 (2.56 - 906.50); p=0.0004]. 10% (37/346) and 15% (53/346) of isolates within GPSC33 had genes associated with resistance to penicillin and co-trimoxazole, respectively, and 18% (128/716) of isolates within GPSC46 had genes associated with resistance to co-trimoxazole. Resistant isolates formed genetic clusters which may suggest emerging resistant lineages. Discussion: Serotype 16F lineages are common in Southern Africa. Some of these lineages are associated with disease, and resistance to penicillin and cotrimoxazole. We recommend continuous genomic surveillance to determine long term impact of serotype 16F lineages on vaccine efficacy and antimicrobial therapy globally. Investing in vaccine strategies that offer protection over a wide range of serotypes/lineages remains essential. DATA SUMMARY: The sequencing reads for the genomes analysed have been deposited in the European Nucleotide Archive and the accession numbers for each isolate are listed in Supplementary Table1 . Phylogenetic tree of serotype 16F pneumococcal genomes and associated metadata are available for download and visualisation on the Microreact website: Phylogenies of seotype 16F, GPSC33 and GPSC46 are available on the Microreact serotype-16F , GPSC33 and GPSC46 , respectively. IMPACT STATEMENT: This study shows that serotype 16F lineages are predominant in Southern Africa and are associated with disease and antimicrobial resistance. Although serotype 16F has been included in the newer formulation of the upcoming vaccine formulations of PCV21 and IVT-25, continuous surveillance to determine long term impact of serotype 16F lineages on vaccines and antimicrobial therapy remains essential.

15.
Nucleic Acids Res ; 51(19): 10375-10394, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37757859

RESUMO

Despite enabling Streptococcus pneumoniae to acquire antibiotic resistance and evade vaccine-induced immunity, transformation occurs at variable rates across pneumococci. Phase variants of isolate RMV7, distinguished by altered methylation patterns driven by the translocating variable restriction-modification (tvr) locus, differed significantly in their transformation efficiencies and biofilm thicknesses. These differences were replicated when the corresponding tvr alleles were introduced into an RMV7 derivative lacking the locus. RNA-seq identified differential expression of the type 1 pilus, causing the variation in biofilm formation, and inhibition of competence induction in the less transformable variant, RMV7domi. This was partly attributable to RMV7domi's lower expression of ManLMN, which promoted competence induction through importing N-acetylglucosamine. This effect was potentiated by analogues of some proteobacterial competence regulatory machinery. Additionally, one of RMV7domi's phage-related chromosomal island was relatively active, which inhibited transformation by increasing expression of the stress response proteins ClpP and HrcA. However, HrcA increased competence induction in the other variant, with its effects depending on Ca2+ supplementation and heat shock. Hence the heterogeneity in transformation efficiency likely reflects the diverse signalling pathways by which it is affected. This regulatory complexity will modulate population-wide responses to synchronising quorum sensing signals to produce co-ordinated yet stochastic bet hedging behaviour.


Assuntos
Proteínas de Bactérias , Streptococcus pneumoniae , Proteínas de Bactérias/metabolismo , Biofilmes , Proteínas de Choque Térmico/metabolismo , Percepção de Quorum , Streptococcus pneumoniae/metabolismo
16.
J Biol Chem ; 299(9): 105085, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495106

RESUMO

The polysaccharide (PS) capsule is essential for immune evasion and virulence of Streptococcus pneumoniae. Existing pneumococcal vaccines are designed to elicit anticapsule antibodies; however, the effectiveness of these vaccines is being challenged by the emergence of new capsule types or variants. Herein, we characterize a newly discovered capsule type, 33E, that appears to have repeatedly emerged from vaccine type 33F via an inactivation mutation in the capsule glycosyltransferase gene, wciE. Structural analysis demonstrated that 33E and 33F share an identical repeat unit backbone [→5)-ß-D-Galf2Ac-(1→3)-ß-D-Galp-(1→3)-α-D-Galp-(1→3)-ß-D-Galf-(1→3)-ß-D-Glcp-(1→], except that a galactose (α-D-Galp) branch is present in 33F but not in 33E. Though the two capsule types were indistinguishable using conventional typing methods, the monoclonal antibody Hyp33FM1 selectively bound 33F but not 33E pneumococci. Further, we confirmed that wciE encodes a glycosyltransferase that catalyzes the addition of the branching α-D-Galp and that its inactivation in 33F strains results in the expression of the 33E capsule type. Though 33F and 33E share a structural and antigenic similarity, our pilot study suggested that immunization with a 23-valent pneumococcal PS vaccine containing 33F PS did not significantly elicit cross-opsonic antibodies to 33E. New conjugate vaccines that target capsule type 33F may not necessarily protect against 33E. Therefore, studies of new conjugate vaccines require knowledge of the newly identified capsule type 33E and reliable pneumococcal typing methods capable of distinguishing it from 33F.


Assuntos
Cápsulas Bacterianas , Genes Bacterianos , Infecções Pneumocócicas , Streptococcus pneumoniae , Transferases , Anticorpos Antibacterianos/imunologia , Projetos Piloto , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/classificação , Vacinas Pneumocócicas/imunologia , Polissacarídeos/química , Sorogrupo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/imunologia , Vacinas Conjugadas/classificação , Vacinas Conjugadas/imunologia , Cápsulas Bacterianas/química , Cápsulas Bacterianas/genética , Genes Bacterianos/genética , Genes Bacterianos/imunologia , Inativação Gênica , Transferases/genética , Transferases/metabolismo
18.
Front Microbiol ; 14: 1185753, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275158

RESUMO

Introduction: Maternal immunization against Group B Streptococcus (GBS) has the potential to significantly reduce the burden of neonatal GBS infections. Population genetics of GBS from maternal carriage can offer key insights into vaccine target distribution. Methods: In this study we characterized the population structure of GBS isolates from maternal carriage (n = 535) in an ethnically diverse community in London, using whole genome sequencing. Results: The isolates clustered into nine clonal complexes (CCs) but the majority (95%) belonged to five lineages: CC1 (26%), CC19 (26%), CC23 (20%), CC17 (13%) and CC8/10 (10%). Nine serotypes were identified, the most common were serotypes III (26%), V (21%), II (19%) and Ia (19%). Other serotypes (Ib, IV, VI, VII, IX) represented less than 10% of all isolates each. Intra-lineage serotype diversity was observed in all major CCs but was highest in CC1, which revealed nine serotypes. Nearly all isolates (99%) carried at least one of the four alpha family protein genes (alpha, alp1, alp23, and rib). All isolates were susceptible to penicillin. We found 21% and 13% of isolates to be resistant to clarithromycin and clindamycin, respectively. Prevalence of macrolide-lincosamide-streptogramin B (MLSB) resistance genes was 22% and they were most common in CC19 (37%) and CC1 (28%), and isolates with serotypes V (38%) and IV (32%). We identified some associations between maternal ethnicity and GBS population structure. Serotype Ib was significantly less common among the South Asian compared to Black women (S. Asian: 3/142, Black: 15/135, p = 0.03). There was also a significantly lower proportion of CC1 isolates among the White other (24/142) in comparison to Black (43/135) and S. Asian (44/142) women (p = 0.04). We found a significantly higher proportion of CC17 isolates among the White other compared to S. Asian women (White other: 32/142, S. Asian: 10/142, p = 0.004). Conclusion: Our study showed high prevalence of GBS vaccine targets among isolates from pregnant women in London. However, the observed serotype diversity in CC1 and high prevalence of MLSB resistance genes in CC19 demonstrates presence of high risk lineages, which might act as a reservoir of non-vaccine strains and antimicrobial resistance determinants.

19.
Microb Genom ; 9(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37083600

RESUMO

The introduction of pneumococcal conjugate vaccines (PCV7, PCV10, PCV13) around the world has proved successful in preventing invasive pneumococcal disease. However, immunization against Streptococcus pneumoniae has led to serotype replacement by non-vaccine serotypes, including serotype 15A. Clonal complex 63 (CC63) is associated with many serotypes and has been reported in association with 15A after introduction of PCVs. A total of 865 CC63 isolates were included in this study, from the USA (n=391) and a global collection (n=474) from 1998-2019 and 1995-2018, respectively. We analysed the genomic sequences to identify serotypes and penicillin-binding protein (PBP) genes 1A, 2B and 2X, and other resistance determinants, to predict minimum inhibitory concentrations (MICs) against penicillin, erythromycin, clindamycin, co-trimoxazole and tetracycline. We conducted phylogenetic and spatiotemporal analyses to understand the evolutionary history of the 15A-CC63 sub-lineage. Overall, most (89.5 %, n=247) pre-PCV isolates in the CC63 cluster belonged to serotype 14, with 15A representing 6.5 % of isolates. Conversely, serotype 14 isolates represented 28.2 % of post-PCV CC63 isolates (n=618), whilst serotype 15A isolates represented 65.4 %. Dating of the CC63 lineage determined the most recent common ancestor emerged in the 1980s, suggesting the 15A-CC63 sub-lineage emerged from its closest serotype 14 ancestor prior to the development of pneumococcal vaccines. This sub-lineage was predominant in the USA, Israel and China. Multidrug resistance (to three or more drug classes) was widespread among isolates in this sub-lineage. We show that the CC63 lineage is globally distributed and most of the isolates are penicillin non-susceptible, and thus should be monitored.


Assuntos
Penicilinas , Streptococcus pneumoniae , Vacinas Conjugadas , Filogenia , Penicilinas/farmacologia , Genômica
20.
J Clin Microbiol ; 61(4): e0002423, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36971549

RESUMO

Streptococcus pneumoniae can produce a wide breadth of antigenically diverse capsule types, a fact that poses a looming threat to the success of vaccines that target pneumococcal polysaccharide (PS) capsule. Yet, many pneumococcal capsule types remain undiscovered and/or uncharacterized. Prior sequence analysis of pneumococcal capsule synthesis (cps) loci suggested the existence of capsule subtypes among isolates identified as "serotype 36" according to conventional capsule typing methods. We discovered these subtypes represent two antigenically similar but distinguishable pneumococcal capsule serotypes, 36A and 36B. Biochemical analysis of their capsule PS structure reveals that both have the shared repeat unit backbone [→5)-α-d-Galf-(1→1)-d-Rib-ol-(5→P→6)-ß-d-ManpNAc-(1→4)-ß-d-Glcp-(1→] with two branching structures. Both serotypes have a ß-d-Galp branch to Ribitol. Serotypes 36A and 36B differ by the presence of a α-d-Glcp-(1→3)-ß-d-ManpNAc or α-d-Galp-(1→3)-ß-d-ManpNAc branch, respectively. Comparison of the phylogenetically distant serogroup 9 and 36 cps loci, which all encode this distinguishing glycosidic bond, revealed that the incorporation of Glcp (in types 9N and 36A) versus Galp (in types 9A, 9V, 9L, and 36B) is associated with the identity of four amino acids in the cps-encoded glycosyltransferase WcjA. Identifying functional determinants of cps-encoded enzymes and their impact on capsule PS structure is key to improving the resolution and reliability of sequencing-based capsule typing methods and discovering novel capsule variants indistinguishable by conventional serotyping methods.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Humanos , Sorogrupo , Reprodutibilidade dos Testes , Sorotipagem , Polissacarídeos , Vacinas Pneumocócicas , Cápsulas Bacterianas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...